summaryrefslogtreecommitdiffhomepage
path: root/src/nxt_mem_zone.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/nxt_mem_zone.c958
1 files changed, 958 insertions, 0 deletions
diff --git a/src/nxt_mem_zone.c b/src/nxt_mem_zone.c
new file mode 100644
index 00000000..02dd4328
--- /dev/null
+++ b/src/nxt_mem_zone.c
@@ -0,0 +1,958 @@
+
+/*
+ * Copyright (C) Igor Sysoev
+ * Copyright (C) NGINX, Inc.
+ */
+
+#include <nxt_main.h>
+
+
+#define NXT_MEM_ZONE_PAGE_FREE 0
+/*
+ * A page was never allocated before so it should be filled with
+ * junk on the first time allocation if memory debugging is enabled.
+ */
+#define NXT_MEM_ZONE_PAGE_FRESH 1
+
+/* An entire page is currently used, no chunks inside the page. */
+#define NXT_MEM_ZONE_PAGE_USED 2
+
+
+typedef struct nxt_mem_zone_page_s nxt_mem_zone_page_t;
+
+struct nxt_mem_zone_page_s {
+ /*
+ * A size of page chunks if value is greater than or equal to 16.
+ * Otherwise it is used to mark page state: NXT_MEM_ZONE_PAGE_FREE,
+ * NXT_MEM_ZONE_PAGE_FRESH, and NXT_MEM_ZONE_PAGE_USED.
+ */
+ uint16_t size;
+
+ /* A number of free chunks of a chunked page. */
+ uint16_t chunks;
+
+ union {
+ /* A chunk bitmap if a number of chunks is lesser than 32. */
+ uint8_t map[4];
+ /*
+ * The count is a number of successive occupied pages in the first
+ * page. In the next occupied pages and in all free pages the count
+ * is zero, because a number of successive free pages is stored in
+ * free block size resided in beginning of the first free page.
+ */
+ uint32_t count;
+ } u;
+
+ /* Used for slot list of pages with free chunks. */
+ nxt_mem_zone_page_t *next;
+
+ /*
+ * Used to link of all pages including free, chunked and occupied
+ * pages to coalesce free pages.
+ */
+ nxt_queue_link_t link;
+};
+
+
+typedef struct {
+ uint32_t size;
+ uint32_t chunks;
+ uint32_t start;
+ uint32_t map_size;
+ nxt_mem_zone_page_t *pages;
+} nxt_mem_zone_slot_t;
+
+
+typedef struct {
+ NXT_RBTREE_NODE (node);
+ uint32_t size;
+} nxt_mem_zone_free_block_t;
+
+
+struct nxt_mem_zone_s {
+ nxt_thread_spinlock_t lock;
+ nxt_mem_zone_page_t *pages;
+ nxt_mem_zone_page_t sentinel_page;
+ nxt_rbtree_t free_pages;
+
+ uint32_t page_size_shift;
+ uint32_t page_size_mask;
+ uint32_t max_chunk_size;
+ uint32_t small_bitmap_min_size;
+
+ u_char *start;
+ u_char *end;
+
+ nxt_mem_zone_slot_t slots[];
+};
+
+
+#define \
+nxt_mem_zone_page_addr(zone, page) \
+ (void *) (zone->start + ((page - zone->pages) << zone->page_size_shift))
+
+
+#define \
+nxt_mem_zone_addr_page(zone, addr) \
+ &zone->pages[((u_char *) addr - zone->start) >> zone->page_size_shift]
+
+
+#define \
+nxt_mem_zone_page_is_free(page) \
+ (page->size < NXT_MEM_ZONE_PAGE_USED)
+
+
+#define \
+nxt_mem_zone_page_is_chunked(page) \
+ (page->size >= 16)
+
+
+#define \
+nxt_mem_zone_page_bitmap(zone, slot) \
+ (slot->size < zone->small_bitmap_min_size)
+
+
+#define \
+nxt_mem_zone_set_chunk_free(map, chunk) \
+ map[chunk / 8] &= ~(0x80 >> (chunk & 7))
+
+
+#define \
+nxt_mem_zone_chunk_is_free(map, chunk) \
+ ((map[chunk / 8] & (0x80 >> (chunk & 7))) == 0)
+
+
+#define \
+nxt_mem_zone_fresh_junk(p, size) \
+ nxt_memset((p), 0xA5, size)
+
+
+#define \
+nxt_mem_zone_free_junk(p, size) \
+ nxt_memset((p), 0x5A, size)
+
+
+static uint32_t nxt_mem_zone_pages(u_char *start, size_t zone_size,
+ nxt_uint_t page_size);
+static void *nxt_mem_zone_slots_init(nxt_mem_zone_t *zone,
+ nxt_uint_t page_size);
+static void nxt_mem_zone_slot_init(nxt_mem_zone_slot_t *slot,
+ nxt_uint_t page_size);
+static nxt_int_t nxt_mem_zone_rbtree_compare(nxt_rbtree_node_t *node1,
+ nxt_rbtree_node_t *node2);
+static void *nxt_mem_zone_alloc_small(nxt_mem_zone_t *zone,
+ nxt_mem_zone_slot_t *slot, size_t size);
+static nxt_uint_t nxt_mem_zone_alloc_chunk(uint8_t *map, nxt_uint_t offset,
+ nxt_uint_t size);
+static void *nxt_mem_zone_alloc_large(nxt_mem_zone_t *zone, size_t alignment,
+ size_t size);
+static nxt_mem_zone_page_t *nxt_mem_zone_alloc_pages(nxt_mem_zone_t *zone,
+ size_t alignment, uint32_t pages);
+static nxt_mem_zone_free_block_t *
+ nxt_mem_zone_find_free_block(nxt_mem_zone_t *zone, nxt_rbtree_node_t *node,
+ uint32_t alignment, uint32_t pages);
+static const char *nxt_mem_zone_free_chunk(nxt_mem_zone_t *zone,
+ nxt_mem_zone_page_t *page, void *p);
+static void nxt_mem_zone_free_pages(nxt_mem_zone_t *zone,
+ nxt_mem_zone_page_t *page, nxt_uint_t count);
+
+
+static nxt_log_moderation_t nxt_mem_zone_log_moderation = {
+ NXT_LOG_ALERT, 2, "mem_zone_alloc() failed, not enough memory",
+ NXT_LOG_MODERATION
+};
+
+
+nxt_mem_zone_t *
+nxt_mem_zone_init(u_char *start, size_t zone_size, nxt_uint_t page_size)
+{
+ uint32_t pages;
+ nxt_uint_t n;
+ nxt_mem_zone_t *zone;
+ nxt_mem_zone_page_t *page;
+ nxt_mem_zone_free_block_t *block;
+
+ if (nxt_slow_path((page_size & (page_size - 1)) != 0)) {
+ nxt_thread_log_alert("mem zone page size must be a power of 2");
+ return NULL;
+ }
+
+ pages = nxt_mem_zone_pages(start, zone_size, page_size);
+ if (pages == 0) {
+ return NULL;
+ }
+
+ zone = (nxt_mem_zone_t *) start;
+
+ /* The function returns address after all slots. */
+ page = nxt_mem_zone_slots_init(zone, page_size);
+
+ zone->pages = page;
+
+ for (n = 0; n < pages; n++) {
+ page[n].size = NXT_MEM_ZONE_PAGE_FRESH;
+ }
+
+ /*
+ * A special sentinel page entry marked as used does not correspond
+ * to a real page. The entry simplifies neighbour queue nodes check
+ * in nxt_mem_zone_free_pages().
+ */
+ zone->sentinel_page.size = NXT_MEM_ZONE_PAGE_USED;
+ nxt_queue_sentinel(&zone->sentinel_page.link);
+ nxt_queue_insert_after(&zone->sentinel_page.link, &page->link);
+
+ /* rbtree of free pages. */
+
+ nxt_rbtree_init(&zone->free_pages, nxt_mem_zone_rbtree_compare, NULL);
+
+ block = (nxt_mem_zone_free_block_t *) zone->start;
+ block->size = pages;
+
+ nxt_rbtree_insert(&zone->free_pages, &block->node);
+
+ return zone;
+}
+
+
+static uint32_t
+nxt_mem_zone_pages(u_char *start, size_t zone_size, nxt_uint_t page_size)
+{
+ u_char *end;
+ size_t reserved;
+ nxt_uint_t n, pages, size, chunks, last;
+ nxt_mem_zone_t *zone;
+
+ /*
+ * Find all maximum chunk sizes which zone page can be split on
+ * with minimum 16-byte step.
+ */
+ last = page_size / 16;
+ n = 0;
+ size = 32;
+
+ do {
+ chunks = page_size / size;
+
+ if (last != chunks) {
+ last = chunks;
+ n++;
+ }
+
+ size += 16;
+
+ } while (chunks > 1);
+
+ /*
+ * Find number of usable zone pages except zone bookkeeping data,
+ * slots, and pages entries.
+ */
+ reserved = sizeof(nxt_mem_zone_t) + (n * sizeof(nxt_mem_zone_slot_t));
+
+ end = nxt_trunc_ptr(start + zone_size, page_size);
+ zone_size = end - start;
+
+ pages = (zone_size - reserved) / (page_size + sizeof(nxt_mem_zone_page_t));
+
+ if (reserved > zone_size || pages == 0) {
+ nxt_thread_log_alert("mem zone size is too small: %uz", zone_size);
+ return 0;
+ }
+
+ reserved += pages * sizeof(nxt_mem_zone_page_t);
+ nxt_memzero(start, reserved);
+
+ zone = (nxt_mem_zone_t *) start;
+
+ zone->start = nxt_align_ptr(start + reserved, page_size);
+ zone->end = end;
+
+ nxt_thread_log_debug("mem zone pages: %uD, unused:%z", pages,
+ end - (zone->start + pages * page_size));
+
+ /*
+ * If a chunk size is lesser than zone->small_bitmap_min_size
+ * bytes, a page's chunk bitmap is larger than 32 bits and the
+ * bimap is placed at the start of the page.
+ */
+ zone->small_bitmap_min_size = page_size / 32;
+
+ zone->page_size_mask = page_size - 1;
+ zone->max_chunk_size = page_size / 2;
+
+ n = zone->max_chunk_size;
+
+ do {
+ zone->page_size_shift++;
+ n /= 2;
+ } while (n != 0);
+
+ return (uint32_t) pages;
+}
+
+
+static void *
+nxt_mem_zone_slots_init(nxt_mem_zone_t *zone, nxt_uint_t page_size)
+{
+ nxt_uint_t n, size, chunks;
+ nxt_mem_zone_slot_t *slot;
+
+ slot = zone->slots;
+
+ slot[0].chunks = page_size / 16;
+ slot[0].size = 16;
+
+ n = 0;
+ size = 32;
+
+ for ( ;; ) {
+ chunks = page_size / size;
+
+ if (slot[n].chunks != chunks) {
+
+ nxt_mem_zone_slot_init(&slot[n], page_size);
+
+ nxt_thread_log_debug(
+ "mem zone size:%uD chunks:%uD start:%uD map:%uD",
+ slot[n].size, slot[n].chunks + 1,
+ slot[n].start, slot[n].map_size);
+
+ n++;
+
+ if (chunks == 1) {
+ return &slot[n];
+ }
+ }
+
+ slot[n].chunks = chunks;
+ slot[n].size = size;
+ size += 16;
+ }
+}
+
+
+static void
+nxt_mem_zone_slot_init(nxt_mem_zone_slot_t *slot, nxt_uint_t page_size)
+{
+ /*
+ * Calculate number of bytes required to store a chunk bitmap
+ * and align it to 4 bytes.
+ */
+ slot->map_size = nxt_align_size(((slot->chunks + 7) / 8), 4);
+
+ /* If chunk size is not a multiple of zone page size, there
+ * is surplus space which can be used for the chunk's bitmap.
+ */
+ slot->start = page_size - slot->chunks * slot->size;
+
+ /* slot->chunks should be one less than actual number of chunks. */
+ slot->chunks--;
+
+ if (slot->map_size > 4) {
+ /* A page's chunks bitmap is placed at the start of the page. */
+
+ if (slot->start < slot->map_size) {
+ /*
+ * There is no surplus space or the space is too
+ * small for chunks bitmap, so use the first chunks.
+ */
+ if (slot->size < slot->map_size) {
+ /* The first chunks are occupied by bitmap. */
+ slot->chunks -= slot->map_size / slot->size;
+ slot->start = nxt_align_size(slot->map_size, 16);
+
+ } else {
+ /* The first chunk is occupied by bitmap. */
+ slot->chunks--;
+ slot->start = slot->size;
+ }
+ }
+ }
+}
+
+
+/*
+ * Round up to the next highest power of 2. The algorithm is
+ * described in "Bit Twiddling Hacks" by Sean Eron Anderson.
+ */
+
+nxt_inline uint32_t
+nxt_next_highest_power_of_two(uint32_t n)
+{
+ n--;
+ n |= n >> 1;
+ n |= n >> 2;
+ n |= n >> 4;
+ n |= n >> 8;
+ n |= n >> 16;
+ n++;
+
+ return n;
+}
+
+
+static nxt_int_t
+nxt_mem_zone_rbtree_compare(nxt_rbtree_node_t *node1, nxt_rbtree_node_t *node2)
+{
+ u_char *start1, *end1, *start2, *end2;
+ uint32_t n, size, size1, size2;
+ nxt_mem_zone_free_block_t *block1, *block2;
+
+ block1 = (nxt_mem_zone_free_block_t *) node1;
+ block2 = (nxt_mem_zone_free_block_t *) node2;
+
+ size1 = block1->size;
+ size2 = block2->size;
+
+ /*
+ * This subtractions do not overflow if number of pages of a free
+ * block is below 2^31-1. This allows to use blocks up to 128G if
+ * a zone page size is just 64 bytes.
+ */
+ n = size1 - size2;
+
+ if (n != 0) {
+ return n;
+ }
+
+ /*
+ * Sort equally sized blocks by their capability to allocate memory with
+ * alignment equal to the size rounded the previous higest power of 2.
+ */
+
+ /* Round the size to the previous higest power of two. */
+ size = nxt_next_highest_power_of_two(size1) >> 1;
+
+ /* Align the blocks' start and end to the rounded size. */
+ start1 = nxt_align_ptr(block1, size);
+ end1 = nxt_trunc_ptr((u_char *) block1 + size1, size);
+
+ start2 = nxt_align_ptr(block2, size);
+ end2 = nxt_trunc_ptr((u_char *) block2 + size2, size);
+
+ return (end1 - start1) - (end2 - start2);
+}
+
+
+void *
+nxt_mem_zone_zalloc(nxt_mem_zone_t *zone, size_t size)
+{
+ void *p;
+
+ p = nxt_mem_zone_align(zone, 1, size);
+
+ if (nxt_fast_path(p != NULL)) {
+ nxt_memzero(p, size);
+ }
+
+ return p;
+}
+
+
+void *
+nxt_mem_zone_align(nxt_mem_zone_t *zone, size_t alignment, size_t size)
+{
+ void *p;
+ nxt_mem_zone_slot_t *slot;
+
+ if (nxt_slow_path((alignment - 1) & alignment) != 0) {
+ /* Alignment must be a power of 2. */
+ return NULL;
+ }
+
+ if (size <= zone->max_chunk_size && alignment <= zone->max_chunk_size) {
+ /* All chunks are aligned to 16. */
+
+ if (alignment > 16) {
+ /*
+ * Chunks which size is power of 2 are aligned to the size.
+ * So allocation size should be increased to the next highest
+ * power of two. This can waste memory, but a main consumer
+ * of aligned allocations is lvlhsh which anyway allocates
+ * memory with alignment equal to size.
+ */
+ size = nxt_next_highest_power_of_two(size);
+ size = nxt_max(size, alignment);
+ }
+
+ /*
+ * Find a zone slot with appropriate chunk size.
+ * This operation can be performed without holding lock.
+ */
+ for (slot = zone->slots; slot->size < size; slot++) { /* void */ }
+
+ nxt_thread_log_debug("mem zone alloc: @%uz:%uz chunk:%uD",
+ alignment, size, slot->size);
+
+ nxt_thread_spin_lock(&zone->lock);
+
+ p = nxt_mem_zone_alloc_small(zone, slot, size);
+
+ } else {
+
+ nxt_thread_log_debug("mem zone alloc: @%uz:%uz", alignment, size);
+
+ nxt_thread_spin_lock(&zone->lock);
+
+ p = nxt_mem_zone_alloc_large(zone, alignment, size);
+ }
+
+ nxt_thread_spin_unlock(&zone->lock);
+
+ if (nxt_fast_path(p != NULL)) {
+ nxt_thread_log_debug("mem zone alloc: %p", p);
+
+ } else {
+ nxt_log_moderate(&nxt_mem_zone_log_moderation,
+ NXT_LOG_ALERT, nxt_thread_log(),
+ "nxt_mem_zone_alloc(%uz, %uz) failed, not enough memory",
+ alignment, size);
+ }
+
+ return p;
+}
+
+
+static void *
+nxt_mem_zone_alloc_small(nxt_mem_zone_t *zone, nxt_mem_zone_slot_t *slot,
+ size_t size)
+{
+ u_char *p;
+ uint8_t *map;
+ nxt_mem_zone_page_t *page;
+
+ page = slot->pages;
+
+ if (nxt_fast_path(page != NULL)) {
+
+ p = nxt_mem_zone_page_addr(zone, page);
+
+ if (nxt_mem_zone_page_bitmap(zone, slot)) {
+ /* A page's chunks bitmap is placed at the start of the page. */
+ map = p;
+
+ } else {
+ map = page->u.map;
+ }
+
+ p += nxt_mem_zone_alloc_chunk(map, slot->start, slot->size);
+
+ page->chunks--;
+
+ if (page->chunks == 0) {
+ /*
+ * Remove full page from the zone slot list of pages with
+ * free chunks.
+ */
+ slot->pages = page->next;
+#if (NXT_DEBUG)
+ page->next = NULL;
+#endif
+ }
+
+ return p;
+ }
+
+ page = nxt_mem_zone_alloc_pages(zone, 1, 1);
+
+ if (nxt_fast_path(page != NULL)) {
+
+ slot->pages = page;
+
+ page->size = slot->size;
+ /* slot->chunks are already one less. */
+ page->chunks = slot->chunks;
+ page->u.count = 0;
+ page->next = NULL;
+
+ p = nxt_mem_zone_page_addr(zone, page);
+
+ if (nxt_mem_zone_page_bitmap(zone, slot)) {
+ /* A page's chunks bitmap is placed at the start of the page. */
+ map = p;
+ nxt_memzero(map, slot->map_size);
+
+ } else {
+ map = page->u.map;
+ }
+
+ /* Mark the first chunk as busy. */
+ map[0] = 0x80;
+
+ return p + slot->start;
+ }
+
+ return NULL;
+}
+
+
+static nxt_uint_t
+nxt_mem_zone_alloc_chunk(uint8_t *map, nxt_uint_t offset, nxt_uint_t size)
+{
+ uint8_t mask;
+ nxt_uint_t n;
+
+ n = 0;
+
+ /* The page must have at least one free chunk. */
+
+ for ( ;; ) {
+ /* The bitmap is always aligned to uint32_t. */
+
+ if (*(uint32_t *) &map[n] != 0xffffffff) {
+
+ do {
+ if (map[n] != 0xff) {
+
+ mask = 0x80;
+
+ do {
+ if ((map[n] & mask) == 0) {
+ /* The free chunk is found. */
+ map[n] |= mask;
+ return offset;
+ }
+
+ offset += size;
+ mask >>= 1;
+
+ } while (mask != 0);
+
+ } else {
+ /* Fast-forward: all 8 chunks are occupied. */
+ offset += size * 8;
+ }
+
+ n++;
+
+ } while (n % 4 != 0);
+
+ } else {
+ /* Fast-forward: all 32 chunks are occupied. */
+ offset += size * 32;
+ n += 4;
+ }
+ }
+}
+
+
+static void *
+nxt_mem_zone_alloc_large(nxt_mem_zone_t *zone, size_t alignment, size_t size)
+{
+ uint32_t pages;
+ nxt_mem_zone_page_t *page;
+
+ pages = (size + zone->page_size_mask) >> zone->page_size_shift;
+
+ page = nxt_mem_zone_alloc_pages(zone, alignment, pages);
+
+ if (nxt_fast_path(page != NULL)) {
+ return nxt_mem_zone_page_addr(zone, page);
+ }
+
+ return NULL;
+}
+
+
+static nxt_mem_zone_page_t *
+nxt_mem_zone_alloc_pages(nxt_mem_zone_t *zone, size_t alignment, uint32_t pages)
+{
+ u_char *p;
+ size_t prev_size;
+ uint32_t prev_pages, node_pages, next_pages;
+ nxt_uint_t n;
+ nxt_mem_zone_page_t *prev_page, *page, *next_page;
+ nxt_mem_zone_free_block_t *block, *next_block;
+
+ block = nxt_mem_zone_find_free_block(zone,
+ nxt_rbtree_root(&zone->free_pages),
+ alignment, pages);
+
+ if (nxt_slow_path(block == NULL)) {
+ return NULL;
+ }
+
+ node_pages = block->size;
+
+ nxt_rbtree_delete(&zone->free_pages, &block->node);
+
+ p = nxt_align_ptr(block, alignment);
+ page = nxt_mem_zone_addr_page(zone, p);
+
+ prev_size = p - (u_char *) block;
+
+ if (prev_size != 0) {
+ prev_pages = prev_size >>= zone->page_size_shift;
+ node_pages -= prev_pages;
+
+ block->size = prev_pages;
+ nxt_rbtree_insert(&zone->free_pages, &block->node);
+
+ prev_page = nxt_mem_zone_addr_page(zone, block);
+ nxt_queue_insert_after(&prev_page->link, &page->link);
+ }
+
+ next_pages = node_pages - pages;
+
+ if (next_pages != 0) {
+ next_page = &page[pages];
+ next_block = nxt_mem_zone_page_addr(zone, next_page);
+ next_block->size = next_pages;
+
+ nxt_rbtree_insert(&zone->free_pages, &next_block->node);
+ nxt_queue_insert_after(&page->link, &next_page->link);
+ }
+
+ /* Go through pages after all rbtree operations to not trash CPU cache. */
+
+ page[0].u.count = pages;
+
+ for (n = 0; n < pages; n++) {
+
+ if (page[n].size == NXT_MEM_ZONE_PAGE_FRESH) {
+ nxt_mem_zone_fresh_junk(nxt_mem_zone_page_addr(zone, &page[n]),
+ zone->page_size_mask + 1);
+ }
+
+ page[n].size = NXT_MEM_ZONE_PAGE_USED;
+ }
+
+ return page;
+}
+
+
+/*
+ * Free blocks are sorted by size and then if the sizes are equal
+ * by aligned allocation capabilty. The former criterion is just
+ * comparison with a requested size and it can be used for iteractive
+ * search. The later criterion cannot be tested only by the requested
+ * size and alignment, so recursive in-order tree traversal is required
+ * to find a suitable free block. nxt_mem_zone_find_free_block() uses
+ * only recursive in-order tree traversal because anyway the slowest part
+ * of the algorithm are CPU cache misses. Besides the last tail recursive
+ * call may be optimized by compiler into iteractive search.
+ */
+
+static nxt_mem_zone_free_block_t *
+nxt_mem_zone_find_free_block(nxt_mem_zone_t *zone, nxt_rbtree_node_t *node,
+ uint32_t alignment, uint32_t pages)
+{
+ u_char *aligned, *end;
+ nxt_mem_zone_free_block_t *block, *free_block;
+
+ if (node == nxt_rbtree_sentinel(&zone->free_pages)) {
+ return NULL;
+ }
+
+ block = (nxt_mem_zone_free_block_t *) node;
+
+ if (pages <= block->size) {
+
+ free_block = nxt_mem_zone_find_free_block(zone, block->node.left,
+ alignment, pages);
+ if (free_block != NULL) {
+ return free_block;
+ }
+
+ aligned = nxt_align_ptr(block, alignment);
+
+ if (pages == block->size) {
+ if (aligned == (u_char *) block) {
+ /* Exact match. */
+ return block;
+ }
+
+ } else { /* pages < block->size */
+ aligned += pages << zone->page_size_shift;
+ end = (u_char *) block + (block->size << zone->page_size_shift);
+
+ if (aligned <= end) {
+ return block;
+ }
+ }
+ }
+
+ return nxt_mem_zone_find_free_block(zone, block->node.right,
+ alignment, pages);
+}
+
+
+void
+nxt_mem_zone_free(nxt_mem_zone_t *zone, void *p)
+{
+ nxt_uint_t count;
+ const char *err;
+ nxt_mem_zone_page_t *page;
+
+ nxt_thread_log_debug("mem zone free: %p", p);
+
+ if (nxt_fast_path(zone->start <= (u_char *) p
+ && (u_char *) p < zone->end))
+ {
+ page = nxt_mem_zone_addr_page(zone, p);
+
+ nxt_thread_spin_lock(&zone->lock);
+
+ if (nxt_mem_zone_page_is_chunked(page)) {
+ err = nxt_mem_zone_free_chunk(zone, page, p);
+
+ } else if (nxt_slow_path(nxt_mem_zone_page_is_free(page))) {
+ err = "page is already free";
+
+ } else if (nxt_slow_path((uintptr_t) p & zone->page_size_mask) != 0) {
+ err = "invalid pointer to chunk";
+
+ } else {
+ count = page->u.count;
+
+ if (nxt_fast_path(count != 0)) {
+ nxt_mem_zone_free_junk(p, count * zone->page_size_mask + 1);
+ nxt_mem_zone_free_pages(zone, page, count);
+ err = NULL;
+
+ } else {
+ /* Not the first allocated page. */
+ err = "pointer to wrong page";
+ }
+ }
+
+ nxt_thread_spin_unlock(&zone->lock);
+
+ } else {
+ err = "pointer is out of zone";
+ }
+
+ if (nxt_slow_path(err != NULL)) {
+ nxt_thread_log_alert("nxt_mem_zone_free(%p): %s", p, err);
+ }
+}
+
+
+static const char *
+nxt_mem_zone_free_chunk(nxt_mem_zone_t *zone, nxt_mem_zone_page_t *page,
+ void *p)
+{
+ u_char *map;
+ uint32_t size, offset, chunk;
+ nxt_mem_zone_page_t *pg, **ppg;
+ nxt_mem_zone_slot_t *slot;
+
+ size = page->size;
+
+ /* Find a zone slot with appropriate chunk size. */
+ for (slot = zone->slots; slot->size < size; slot++) { /* void */ }
+
+ offset = (uintptr_t) p & zone->page_size_mask;
+ offset -= slot->start;
+
+ chunk = offset / size;
+
+ if (nxt_slow_path(offset != chunk * size)) {
+ return "pointer to wrong chunk";
+ }
+
+ if (nxt_mem_zone_page_bitmap(zone, slot)) {
+ /* A page's chunks bitmap is placed at the start of the page. */
+ map = (u_char *) ((uintptr_t) p & ~((uintptr_t) zone->page_size_mask));
+
+ } else {
+ map = page->u.map;
+ }
+
+ if (nxt_mem_zone_chunk_is_free(map, chunk)) {
+ return "chunk is already free";
+ }
+
+ nxt_mem_zone_set_chunk_free(map, chunk);
+
+ nxt_mem_zone_free_junk(p, page->size);
+
+ if (page->chunks == 0) {
+ page->chunks = 1;
+
+ /* Add the page to the head of slot list of pages with free chunks. */
+ page->next = slot->pages;
+ slot->pages = page;
+
+ } else if (page->chunks != slot->chunks) {
+ page->chunks++;
+
+ } else {
+
+ if (map != page->u.map) {
+ nxt_mem_zone_free_junk(map, slot->map_size);
+ }
+
+ /*
+ * All chunks are free, remove the page from the slot list of pages
+ * with free chunks and add the page to the free pages tree.
+ */
+ ppg = &slot->pages;
+
+ for (pg = slot->pages; pg != NULL; pg = pg->next) {
+
+ if (pg == page) {
+ *ppg = page->next;
+ break;
+ }
+
+ ppg = &pg->next;
+ }
+
+ nxt_mem_zone_free_pages(zone, page, 1);
+ }
+
+ return NULL;
+}
+
+
+static void
+nxt_mem_zone_free_pages(nxt_mem_zone_t *zone, nxt_mem_zone_page_t *page,
+ nxt_uint_t count)
+{
+ nxt_mem_zone_page_t *prev_page, *next_page;
+ nxt_mem_zone_free_block_t *block, *prev_block, *next_block;
+
+ page->size = NXT_MEM_ZONE_PAGE_FREE;
+ page->chunks = 0;
+ page->u.count = 0;
+ page->next = NULL;
+
+ nxt_memzero(&page[1], (count - 1) * sizeof(nxt_mem_zone_page_t));
+
+ next_page = nxt_queue_link_data(page->link.next, nxt_mem_zone_page_t, link);
+
+ if (nxt_mem_zone_page_is_free(next_page)) {
+
+ /* Coalesce with the next free pages. */
+
+ nxt_queue_remove(&next_page->link);
+ nxt_memzero(next_page, sizeof(nxt_mem_zone_page_t));
+
+ next_block = nxt_mem_zone_page_addr(zone, next_page);
+ count += next_block->size;
+ nxt_rbtree_delete(&zone->free_pages, &next_block->node);
+ }
+
+ prev_page = nxt_queue_link_data(page->link.prev, nxt_mem_zone_page_t, link);
+
+ if (nxt_mem_zone_page_is_free(prev_page)) {
+
+ /* Coalesce with the previous free pages. */
+
+ nxt_queue_remove(&page->link);
+
+ prev_block = nxt_mem_zone_page_addr(zone, prev_page);
+ count += prev_block->size;
+ nxt_rbtree_delete(&zone->free_pages, &prev_block->node);
+
+ prev_block->size = count;
+ nxt_rbtree_insert(&zone->free_pages, &prev_block->node);
+
+ return;
+ }
+
+ block = nxt_mem_zone_page_addr(zone, page);
+ block->size = count;
+ nxt_rbtree_insert(&zone->free_pages, &block->node);
+}