Age | Commit message (Collapse) | Author | Files | Lines |
|
No functional changes.
|
|
To support TLS sessions, Unit uses the OpenSSL built-in session cache; the
cache_size option defines the number sessions to store. To disable the feather,
the option must be zero.
|
|
A new application thread port message can be processed in the router after the
application is removed from the router. Assertion for this case is replaced by
a condition to store the new thread port until receiving the stop notification
from the application process.
|
|
Because of the incorrect 'last' field assignment, multiple listeners with
a TLS certificate did not initialize properly, which caused a router crash
while establishing a connection.
Test with multiple TLS listeners added.
The issue was introduced in the c548e46fe516 commit.
This closes #561 issue on GitHub.
|
|
To perform various configuration operations on SSL_CTX, OpenSSL provides
SSL_CONF_cmd(). Specifically, to configure ciphers for a listener,
"CipherString" and "Ciphersuites" file commands are used:
https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html
This feature can be configured in the "tls/conf_commands" section.
|
|
A crash was caused by an incorrect timer handler nxt_h1p_idle_timeout() if
SSL_shutdown() returned SSL_ERROR_WANT_READ/SSL_ERROR_WANT_WRITE.
The flag SSL_RECEIVED_SHUTDOWN is used to avoid getting SSL_ERROR_WANT_READ, so
the server won't wait for a close notification from a client.
For SSL_ERROR_WANT_WRITE, a correct timer handler is set up.
|
|
This patch fixes a possible race between the nxt_router_conf_wait() and
nxt_router_listen_socket_release() function calls and improves the 7f1b2eaa2d58
commit fix.
|
|
When an invalid TLS configuration is applied (such as the conf_commands
feature), nxt_cert_store_get() creates a buffer to send a certificate request
to the main process and adds its default completion handler to an asynchronous
queue to free the allocated buffer. However, if configuration fails,
nxt_router_conf_error() removes the memory pool used to allocate the buffer,
causing a crash when the completion handler is dispatched.
Assertion "src/nxt_buf.c:208 assertion failed: data == b->parent" is triggered
when is NXT_DEBUG enabled in the configure script.
This patch uses a reference counter to retain the memory pool and redefines the
completion handler to free the buffer before releasing the memory pool.
|
|
Listen socket is actually closed in the instant timer handler. This patch moves
the "configuration has been applied" notification to the timer handler to avoid
a situation when the user gets the response from the controller, but the listen
socket is still open in the router.
|
|
This is a prerequisite for further introduction of openat2() features.
No functional changes.
|
|
This fixes memory and shm file descriptor leakage that occurred when a large
request body was passed via shared memory. The leakage was caught with the
"test_settings_body_buffer_size" test. The main condition is the
"body_buffer_size" value exceeding 10 Mb (a shm segment). Thus, the router was
forced to split the body into several shm segments, but these buffers were not
freed because of dummy completion handlers.
|
|
The certificate is selected by matching the arriving SNI to the common name and
the alternatives names. If no certificate matches the name, the first bundle in
the array is chosen.
|
|
pthread_t on Solaris is an integer type with size not equal to pointer size.
To avoid warnings, type casts to and from pointer needs to be done via
uintptr_t type.
This change originally proposed by Juraj Lutter <juraj@lutter.sk>.
|
|
After WebSocket processing, the application port was released with incorrect
reason ("got request"), unnecessarily decrementing the active request counter.
The assertion was triggered only on application removal; a test was added
for this case.
|
|
The controller process awaits the response from the router for every
configration change request. This patch adds error reporting for various error
conditions which may happen because of file descriptors or memory shortage.
Lack of a response lead to the controller awaiting the response, thus being
unable to process other client reconfiguration requests that also became stuck.
|
|
Each application in router process required fd for a request queue shared
memory. When the number of file descripts close to the limit, and port sockets
successfully opened, router needs to properly handle the errors.
This patch closes port sockets before destroying port structure to avoid
file descriptors leakage and assertion in debug build.
|
|
Multithreaded application may create different shared memory segments in
different threads. The segments then passed to different router threads.
Because of this multithreading, the order of adding incoming segments is
not determined and there can be situation when some of the incoming segments
are not initialized yet.
This patch simply adds check for NULL to skip non-initialized segments.
Crash reproduced during load tests with high number of simultaneous
connections (1024 and more).
|
|
This closes #498 issue on GitHub.
|
|
Previously, all requests that contained in header field names characters other
than alphanumeric, or "-", or "_" were rejected with a 400 "Bad Request" error
response.
Now, the parser allows the same set of characters as specified in RFC 7230,
including: "!", "#", "$", "%", "&", "'", "*", "+", ".", "^", "`", "|", and "~".
Header field names that contain only these characters are considered valid.
Also, there's a new option introduced: "discard_unsafe_fields". It accepts
boolean value and it is set to "true" by default.
When this option is "true", all header field names that contain characters
in valid range, but other than alphanumeric or "-" are skipped during parsing.
When the option is "false", these header fields aren't skipped.
Requests with non-valid characters in header field names according to
RFC 7230 are rejected regardless of "discard_unsafe_fields" setting.
This closes #422 issue on GitHub.
|
|
Application shared queue only capable to pass one shared memory buffer.
The rest buffers in chain needs to be send directly to application in response
to REQ_HEADERS_AC message.
The issue can be reproduced for configurations where 'body_buffer_size' is
greater than memory segment size (10 Mb). Requests with body size greater
than 10 Mb are just `stuck` e.g. not passed to application awaiting for more
data from router.
The bug was introduced in 1d84b9e4b459 (v1.19.0).
|
|
The PORT_ACK message is the router's response to the application's NEW_PORT
message. After receiving PORT_ACK, the application is safe to process requests
using this port.
This message avoids a racing condition when the application starts processing a
request from the shared queue and sends REQ_HEADERS_ACK. The REQ_HEADERS_ACK
message contains the application port ID as reply_port, which the router uses
to send request data. When the application creates a new port, it
immediately sends it to the main router thread. Because the request is
processed outside the main thread, a racing condition can occur between the
receipt of the new port in the main thread and the receipt of REQ_HEADERS_ACK
in the worker router thread where the same port is specified as reply_port.
|
|
|
|
Every internal server error response should have a clear description in log.
|
|
This fixes the router's crash on buildbot; the reason was an unexpected 'last'
response from the application to the router arriving before the response
headers. The last buffer is not a memory buffer, so the result of accessing
memory fields is unpredictable.
The unexpected 'last' message was caused by an error in libunit; fixed in
fee8fd855a00.
|
|
|
|
The issue was introduced in changeset 1d84b9e4b459. The request buffer was
transferred via the shared application queue, but the buffer position and the
'sent' flag were not updated after the buffer had been sent.
|
|
Messed up return values in nxt_upstream_find() caused error in applying any
configuration with a valid "pass" value in router configuration pointing to
upstream. That wasn't the case in "listeners" objects, where the return value
wasn't checked.
Also, it caused segfault in cases where the "pass" option was configured with
variables and resulting value was pointing to a non-existent upstream.
Added missing return checks as well to catch possible memory allocation errors.
The bug was introduced in d32bc428f46b.
This closes #472 issue on GitHub.
|
|
The coming ASGI support requires raw HTTP headers format. Headers grouping
and upcase code were moved to WSGI module.
|
|
It's not used since cbcd76704c90.
This option is a leftover from previous IPC between router and applications
processes. It was never documented, though.
Thanks to 洪志道 (Hong Zhi Dao).
|
|
Buffer for application prefork request allocated from temp conf mem_pool.
If error response from main process received before buffer completion handler,
temp conf mem_pool destroyed and router may crash in completion handler.
Assertion "src/nxt_buf.c:208 assertion failed: data == b->parent" triggered
when NXT_DEBUG_ALLOC enabled in configure.
This patch disables completion handler and memory allocated for buffer
released with memory pool.
|
|
|
|
After shared application port introducing, request queue in router was
removed and requests may stuck forever waiting for another process start.
|
|
Two consecutive fd and fd2 fields replaced with array.
|
|
The goal is to minimize the number of syscalls needed to deliver a message.
|
|
Mostly harmless.
|
|
|
|
This is the port shared between all application processes which use it to pass
requests for processing. Using it significantly simplifies the request
processing code in the router. The drawback is 2 more file descriptors per each
configured application and more complex libunit message wait/read code.
|
|
The application process needs to request the shared memory segment from the
router instead of the latter pushing the segment before sending a request to
the application. This is required to simplify the communication between the
router and the application and to prepare the router for using the application
shared port and then the queue.
|
|
The application process needs to request the port from the router instead of the
latter pushing the port before sending a request to the application. This is
required to simplify the communication between the router and the application
and to prepare the router to use the application shared port and then the queue.
|
|
If there are no listen sockets, the router configuration usage counter
remains 0 and never decreases. The only moment to release a configuration is
right after a configuration update.
|
|
Earlier patch 1bf971f83571 fixes connection leakage. But connection
free requires separate remote sockaddr release.
|
|
A connection object is allocated in advance for each listen event object to be
used for the established connection. This connection needs to be freed when the
listen event is destroyed.
|
|
There is no restrictions on configration size and using segmented shared memory
only doubles memory usage because to parse configration on router side,
it needs to be 'plain' e. g. located in single continous memory buffer.
|
|
Racing conditions reproduced periodically on test_python_process_switch.
|
|
The lifespan of a listening socket is longer than both router
configuration's and temporary router configuration's lifespan,
so the sockets should be stored in persistent queues. Safety
is ensured by the fact that the router processes only one new
configuration at any time.
|
|
The process abstraction has changed to:
setup(task, process)
start(task, process_data)
prefork(task, process, mp)
The prefork() occurs in the main process right before fork.
The file src/nxt_main_process.c is completely free of process
specific logic.
The creation of a process now supports a PROCESS_CREATED state. The
The setup() function of each process can set its state to either
created or ready. If created, a MSG_PROCESS_CREATED is sent to main
process, where external setup can be done (required for rootfs under
container).
The core processes (discovery, controller and router) doesn't need
external setup, then they all proceeds to their start() function
straight away.
In the case of applications, the load of the module happens at the
process setup() time and The module's init() function has changed
to be the start() of the process.
The module API has changed to:
setup(task, process, conf)
start(task, data)
As a direct benefit of the PROCESS_CREATED message, the clone(2) of
processes using pid namespaces now doesn't need to create a pipe
to make the child block until parent setup uid/gid mappings nor it
needs to receive the child pid.
|
|
This is required to handle REMOVE_PID messages if router engine
initialization is incomplete.
|
|
This should resolve some static analyzers warnings.
|
|
This allows to specify multiple subsequent targets inside PHP applications.
For example:
{
"listeners": {
"*:80": {
"pass": "routes"
}
},
"routes": [
{
"match": {
"uri": "/info"
},
"action": {
"pass": "applications/my_app/phpinfo"
}
},
{
"match": {
"uri": "/hello"
},
"action": {
"pass": "applications/my_app/hello"
}
},
{
"action": {
"pass": "applications/my_app/rest"
}
}
],
"applications": {
"my_app": {
"type": "php",
"targets": {
"phpinfo": {
"script": "phpinfo.php",
"root": "/www/data/admin",
},
"hello": {
"script": "hello.php",
"root": "/www/data/test",
},
"rest": {
"root": "/www/data/example.com",
"index": "index.php"
},
}
}
}
}
|
|
This is useful to escape "/" in path fragments. For example, in order
to reference the application named "foo/bar":
{
"pass": "applications/foo%2Fbar"
}
|